The Algebraic Degree of Geometric Optimization Problems
نویسنده
چکیده
AJ1STRACT In this paper we apply Galois theoretic algebraic methods to certain fundamental geometric optimization problems whose recognition versions are not even known to be in the class NP. In particular we show that the classic Weber problem, the Line-restricted' Weber probe lem and the 3-Dimension version of this problem are in general not solvable by radicals over the field of rationals. One: direct consequence of these results is that for these geometric optimization problems there exists no exact algorithm under models of computation where the root of an algebraic equation is obtained using arithmetic opf;rations and the extraction of e h roots. This leaves only numeric or symbolic approximations to the SOlutions, where the complexity of the approximations is shown to be primarily a function of the algebraic degree of the optimum solution point.
منابع مشابه
Global optimization of fractional posynomial geometric programming problems under fuzziness
In this paper we consider a global optimization approach for solving fuzzy fractional posynomial geometric programming problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm which achieves the optimal solution of the optimization problem by means of solving a sequence of subproblems ...
متن کاملConstrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملOptimisation polynomiale et variétés polaires : théorie, algorithmes, et implantations. (Polynomial Optimization and Polar Varieties: theory, algorithms and implementations)
Computing the global infimum f⋆ of a multivariate polynomial subject to some constraints is a central question since it appears in many areas of engineering science. For some particular applications, it is of first importance to obtain reliable results. A lot of techniques has emerged to deal with constraints defined by polynomial inequalities. In this thesis, we focus on the optimization probl...
متن کاملReal Spectrum and the Abstract Positivstellensatz
Algebraic geometry emerged from the study of subsets of C defined by polynomial equations, namely algebraic sets. Parallel to this, real algebraic geometry emerged from studying subsets of R defined by polynomial equations and inequalities, namely semi-algebraic sets. Like algebraic geometry, classical methods in real algebraic geometry provided useful but limited intuition on the relationship ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 3 شماره
صفحات -
تاریخ انتشار 1988